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The standard tinite element schemes for computing etgenvalues of the Laplactan converge 
slowly wtth decreasing mesh size if the domain boundary contains a re-entrant corner. A 
superelement is constructed to cover the region surrounding a corner of angle 3x/2. Inside the 
superelement, the mesh is refuted and the trial function constrained to tit the known analytic 
form of the solution in the neighborhood of the corner singularity. Being compatible with 
linear and bilinear elements, the superelement is easily embodied mto standard tinite element 
programs. Calculattons are made for an L-shaped domain with various boundary conditions. 
Compartson with other calculations show that the incorporatton of the superelement has 
neutrahsed the deterioration in convergence which would otherwtse have taken place due to 
the presence of the re-entrant corner. (‘ 1988 Academic Press. Inc 

1. INTROD~JCTION 

It is often necessary to compute eigenvalues of the Laplacian subject to 
homogeneous conditions over the boundary of the domain considered. Two cases 
frequently encountered, for example, are the determination of the cutoff frequences 
for various modes of propagation in an electromagnetic waveguide [ 11, or of the 
frequences of vibration of an elastic membrane [2]. The computation is particularly 
difficult if the boundary contains one or more re-entrant corners. At each such 
corner, the solution has a singularity, and the usual computational schemes need to 
be modified. For finite element schemes, two main approaches have been adopted 
in order to enable them to deal with singularities in the solution. In one [3,4], the 
finite element mesh is relined in the neighborhood of a singularity. In the other 
[S, 61, extra functions, which reflect the known analytic behavior of the solution in 
the neighborhood of the singularity, are included in the trial function basis. In the 
present paper, we describe a scheme which utilises both ideas. The singularity is 
surrounded by a “superelement” containing a relined mesh, over which the trial 
function is constrained to emulate the behavior of the analytic solution in the 
neighborhood of the singularity. The remainder of the domain is then covered with 
the usual elements. The method was first developed for problems in two-dimen- 
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sional linear elasticity [7], the re-entrant corner arising as a result of a crack in the 
medium. In the work presently described, the method is adapted to solve an eigen- 
value problem. Two superelements for a corner of angle 3x/2, one with Dirichlet 
type homogeneous boundary conditions, and one with Neumann type, have been 
developed and applied to solve the eigenvalue problem for an L-shaped domain. 
Accurate results for such a domain with various types of boundary conditions have 
been obtained by other authors [S, 8-l 11, using a number of different methods, so 
that this may be regarded as a benchmark problem. The results currently obtained 
are in good agreement with those of previous calculations. The superelements may 
easily be incorporated into standard finite-element computational schemes, thus 
giving the method the advantage of general applicability. 

The two superelements used in the current calculation have also been employed 
to compute cutoff frequencies for TE and TM modes in waveguides whose 
boundaries contain corners of angle 3x/2, such as a cross-shaped guide, and guides 
containing ridges. The result of these calculations also agree well with those 
obtained by previous methods of less general applicability, and will be described 
elsewhere [ 121. 

The method is outlined in Section 2 of this paper, and the results for an L-shaped 
domain are described in Section 3. The conclusions to be drawn from the 
calculations are outlined in Section 4. 

2. THE COMPUTATIONAL SCHEME 

We wish to solve 

v2u+/lu=o over D 

subject to boundary conditions 

B(u)=0 on iiD, 

where B(u) may be U, au/&, or u over a part of dD and au/an over the remainder. 
We consider the variational formulation of the problem, in which the solutions are 
the functions giving the Rayleigh quotient 

R(v, u) = 
l-D[(~)2+(~)z]~=+ 

ss 
v2 d.u d? 

D 

a stationary value when taken over all possible functions v which are sufficiently 
differentiable, and which satisfy the essential boundary conditions. The stationary 
values of R(v, o) are the eigenvalues Ak, and the corresponding functions uk the 
eigenfunctions. 
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In the finite element method, the stationary values of the Rayleigh quotient are 
determined over a finite-dimensional subspace Sh of the space of admissible 
functions. A function cjh E Sh is expanded in the form uh = I;=, q,d,(x, y), where 
4,(.x, y) are the basis functions, usually of local support, and q,, the generalised 
coordinates, are to be determined. On substituting this expression for ph into the 
formula for R(u, v) we obtain an expression of the form 

R(v”, ~1”) = Q TKhcl 
Q’ (2) 

where Kh and Mh are the stiffness and mass matrices, respectively, with elements 

The stationary values of R(uh, tlh) are found by solving the generalised eigenvalue 
problem 

Khq = IhMhq. (3) 

In the current method, we surround the singularity with a superelement, the 
construction of which will be described below, and use linear trial functions over 
triangles or bilinear functions over rectangles throughout the remainder of the 
domain. The construction of a superelement has been described in detail elsewhere 
[7] for a boundary value problem in elasticity. While the problem currently 
considered is an eigenvalue problem, the geometry of the superelement and the 
form of the trial functions is similar to that in the problem previously described. We 
will, therefore, confine ourselves to a brief description of the main features of the 
current method. 

In constructing the superelement, we assume that the solution in the 
neighborhood of the singularity is of the form 

where fm(r, 19) are known functions of the polar coordinates (r, 0) relative to an 
origin located at the singularity. The coefficients a, are, of course, unknown, and 
the computation will yield approximate values for the first few coefficients. 

The superelement contains two regions, an inner region D,, over which the mesh 
is refined, and a transition region D,, which matches up between the relined mesh of 
D,, and the mesh in the region D,,, outside the superelement. Over D,,, each 
original rectangular element is subdivided into n2 smaller rectangles, where n will be 
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FIG. 1 L-shaped superelement with Internal relinement (n = 4). 

referred to as the internal refinement number. Figure 1 illustrates the form of an 
L-shaped superelement for the case n = 4. 

In each small rectangle of D,,, we constrain the four nodal values to agree with 
the series (4) suitably truncated, at each corner, that is we require that 

u%,, O,)= i %f,(‘,, e,,, j = 1, . . . . 4. (5) 
m=l 

The trial function over the small rectangle is &hen taken to be the bilinear inter- 
polant to the values of the series (5) at the four corners. Thus the trial function over 
the whole of D,, will depend on the vector of coefficients a = (a,, al, . . . . a,) alone. 
By assembling the stiffness and mass matrices for each small rectangle of D,,, we 
obtain the corresponding matrices for the whole region, expressed with respect to 
the vector of unknowns a. 

The trial functions over D,, are designed to provide a smooth transition between 
the elements of D,, and D,,,. Over a corner element of D,,, a bilinear function is 
used, and it is constrained to agree with the series (5) at the corner adjoining D,,. A 
side element of D,, is divided into n rectangular strips, and we use a piecewise 
bilinear trial function which linearly interpolates between the nodal values over the 
face abutting Dout, and is constrained to agree with the series (5) at each of the 
adjacent nodes of D,,. The unknowns over D,, will thus be the vector of coefficients 
a together with the nodal values, i.e., the values of the trial solution, at the mesh 
points on the boundary of the superelement. We assemble the stiffness and mass 
matrices for the elements of D,, and D,, to arrive at the superelement stiffness and 
mass matrices. These matrices need only be computed once for a given type of 
singularity with given boundary conditions. 

Over Do,,, we use linear trial functions over triangles, and bilinear or 5-point 
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hanging node bilinear functions [4] over rectangles. Thus the trial function is 
piecewise linear over the boundary of the superelement, hence conforming with the 
superelement trial function over its boundary. The stiffness and mass matrices for 
D,,, are assembled in the usual way, and the previously calculated superelement 
matrices are added to obtain the global stiffness and mass matrices Kh and Mh for 
the whole domain. In contradistinction to the case described previously [7], it is 
not possible in our case to eliminate the unknowns a from the superelement matrix, 
as the relevant equations would involve the as yet unknown eigenvalue A. Thus the 
variables to be finally solved for will be the nodal values at the mesh points of D,,, 
(including those on the boundary of the superelement) together with the vector of 
coefficients a. Let us denote the vector of unknowns by q. Then we have to solve 
Eqs. (3) to obtain the eigenvalues 22 and the corresponding eigenvectors qk which 
will, of course, include the values of the coefficients unr for the given eigenvalue II,. 

3. APPLICATION TO AN L-SHAPED DOMAIN, NUMERICAL RESULTS 

Following previous calculations, we took an L-shaped domain of size 2 x 2. The 
re-entrant corner was surrounded by a superelement of size 0.6 x 0.6, as shown in 
Fig. 2. 

The basic mesh in the superelement was obtained by dividing each long side into 
six, so that each element of D,, was of size 0.1 x 0.1. Over D,,,, a coarse mesh of 
size 0.2 x 0.2 (mesh A) or a fine mesh of size 0.1 x 0.1 (mesh B) were used. In the 
former case, the superelement was surrounded with a single layer of elements of 
size 0.1 x 0.1, which were then joined to the elements of size 0.2 x 0.2 using 5-node 
hanging elements as depicted in Fig. 3. 

For the series expansion (4), we used the solution appropriate to a re-entrant 

FIG. 2. Geometry of L-shaped domain with superelement. 
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FIG. 3. Use of S-node “hanging node” element. 

corner of angle 37~12 in an infinite domain. For boundary conditions u =0 when 
t!?=n and 8= -n/2, the series is [S] 

u= f f ++2J’3 sin 2jd/3, 
,=0,=1 

(6) 

where 4 = II- 8, whilst for the conditions au/an = 0 over these same boundaries the 
series is 

u = f f y!,r’1+2J’3 cos 2jq5/3. 
,=OJ=O 

(7) 

The accuracy of the eigenvalues and eigenvectors will depend on the number of 
terms I in the truncated series, on the degree of mesh refinement in the superelement 
(that is, on the mesh refinement number n), and on the mesh size h in the region 
D,,, external to the superelement. 

After some experimentation, it was found that the inclusion of terms with a 
power of r higher than four made little difference to the results. We therefore 
included the terms i = 0; j = 1, . . . . 6 and i = 1; j = 1, 2, 3, giving 9 terms in all, for the 
case of boundary conditions u = 0 over the part of aD coinciding with the 
superelement boundary, while for the case Su/dn = 0 we included the terms i = 0; 
j = 0, . . . . 6, i = 1; j = 0, . . . . 3, and i = 2; j = 0, a total of 12 terms in all. 

In order to investigate the effect of refining the mesh inside the superelement, the 
superelement stiffness and mass matrices were computed with the values 
n = 2,4, 8, 16, and 32 for the mesh refinement number n, while including a fixed 
number of terms in the series expansion. The five values thus obtained for a given 
matrix element were used to determine the parameters a, b, c, p, q in an expression 
of the form a+bn-“+cn- “. The process was repeated for a number of different 
matrix elements, and in each case the values p = 2 and q = 4 were obtained almost 
exactly. We therefore computed extrapolated stiffness and mass matrices for the 
superelement by performing Richardson extrapolation [ 131 on each matrix 
element, assuming a dependence on n of the form x;f =, ctkn 2k, based on the values 
obtained for n = 2, 4, 8, and 16. The extrapolated superelement matrices were 
employed in all of the subsequent calculations. 

As regards the dependence of the results on the mesh size in the external region 
D out 7 taking the results of [S, S] for the u = 0 boundary conditions as exact, we find 



EIGENVALUES FOR LAPLACIAN 239 

that the errors in the eigenvalues for mesh B (0.1 x 0.1) are very close to one quar- 
ter of those for mesh A (0.2 x 0.2). We therefore carried out one step of Richardson 
extrapolation, assuming an h’ dependence for the errors, on the results for the two 
mesh sizes. The extrapolated values agree very well with the exact results. 

In Table I, we tabulate the results for the boundary conditions u = 0, including 
the extrapolated values. For this case, Strang and Fix [ 141 obtained error bounds 
proportional to A*, the square of the eigenvalue, if linear or bilinear elements are 
used. We have, therefore, included the values of the error divided by 1.’ in the table, 
taking the results of [S, S] as exact. 

In Tables II and III we list our results, together with those of previous 
calculations for the case of du/&r = 0, and for the case depicted in Fig. 4, in which 
u = 0 over one face and ih/Sn = 0 over the remainder of the boundary. The 
extrapolated values were again obtained using h’ extrapolation. The eigenvalues 
obtained are related to the cutoff frequencies for the propagation of electromagnetic 
waves in a symmetric ridged waveguide, the L-shape being half of the cross section, 
as illustrated in Fig. 4. 

The boundary conditions u = 0 and Su/dn = 0 correspond to TM and TE waves, 
respectively. The values in Tables II and III are for TE waves which are symmetric 
and antisymmetric, respectively, about the middle of the cross section. The 
L-shaped domain shown in Fig. 2 is symmetric about the line 8 = 45”. Thus for 

TABLE I 

Eigenvalues Obtamed with Boundary Condttrons u = 0 

Mesh A 

k 1 Error/n’ 

8 
9 

10 
11 
12 
13 
14 
15 

9800 0.00173 9.695 0.00059 9.659 
15.606 0.00177 15.316 0.00051 15 219 
20.309 0.00146 19.901 0.00042 19 765 
31.081 0.00179 29.958 0.00050 29.584 
33.643 0 00170 32.437 000051 32.035 
44.734 0.00190 42.531 0.00061 41.796 
48.662 0.00184 46.272 0.00065 45.476 
53.376 0.00165 50.713 0.00056 49.825 
54.157 0.00197 50 733 0.00057 49.591 
61.978 0.00164 58.148 000@45 56.871 
72.147 67.470 65.911 
81.659 0.00210 74.312 0.00064 71 863 
82.095 74.642 72 158 
87.461 0.00136 8 1.472 0.00040 79.476 

105 922 0.00208 94.229 0.00062 90.33 1 

Mesh B 
Extrapolated 

1 Error/l’ 1 
Exact Dominant 

i term 

9.640”. h 
15.197h 
19.739’ 
29.521 b 
31.913” b 
41.475”. b 
44.949 b 
49.348’ 
49.348’ 
56710d,h 

r2 ’ sm 241’3 
r4 ? sm 44/3 

r2 sin 24 
r4,’ sin 4413 
r2,’ sin 26!3 
r2,j stn 2413 
r4 3 sm 4d/3 

9 sin 21 
r4 sin 44 

r’ 3 sm 2(j3 
r’ ’ sin 4413 
r2 ’ sin 29/3 
r’ ’ stn 44/3 

r2 sin 24 
r2’3 sin 24:3 

71.059” 

78.957’ 
89.306” 

a Ref. [S]. 
h Ref. [8]. 
c Eigenvalue of unit square. 
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FIG 4. L-shaped domain as half of symmetric ridged gmde cross sectton. 

boundary conditions which are the same over the whole of 8D the exact solution 
will be either symmetric or antisymmetric about this line, and the numerical results 
for the nodal values did indeed exhibit this symmetry. As a result of the symmetry, 
only certain terms in the series (6) or (7) have non-zero coefficients. In Tables I 
and II we list the form of the dominant term, i.e., the term with the lowest power of 
r for which a non-zero coefficient was obtained in the calculation. The case listed in 
Table III possesses, of course, no symmetry, because of the differing boundary con- 
ditions, and all of the series coefficients are different from zero. 

The excellent agreement with the results of previous calculations show the errors 
in the eigenvalues to be of order h2, as would have been obtained with linear or 
bilinear elements had no singularity been present [ 151. Thus the introduction of the 
superelement has had the effect of neutralising the deterioration in the accuracy 
which would otherwise have occurred due to the presence of the singularity. 

TABLE 11 

Eigenvalues Obtamed wtth Boundary Condttions da/&r = 0 

Prevrous Dommant 
k Mesh A Mesh B Extrapolated calculations term 

1 1.486 1.479 1.476 
2 3.564 3.542 3.534 
3 10.122 9.943 9.884 
4 10.123 9.943 9.883 
5 11.677 11469 Il.399 
6 12.920 12.668 12.584 
1 20.246 19.877 19 754 
8 22.512 21.772 21.526 
9 24.814 23.765 23.416 

10 29.920 28 884 28 538 

1.516”. 1.46b 
3.539”, 3.54’ 
9.869” 
9.869” 

11.38’ 
12.58‘ 
19 I’ 

23.3‘ 

I-‘,’ cos 2&3 
r4 ’ cos 4413 
r2 cos 29 
1 
rJ ’ cos 4813 
r2 ’ cos 2$/3 

rz ’ cos 2413 
rJ ’ cos 4613 
rz 3 cos 24!3 

p Ref. [9]. 
b Ref. [lo] 
c Ref. [ I I 1. 
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TABLE III 

Eigenvalues Obtalned with Mlxed Boundary Conditions 

Previous 
k Mesh A Mesh B Extrapolated calculations 

1 0.3 1694 0.31648 0.3163 0.320”, 0.3 1 b 
2 2.624 2.610 2.606 2.632”, 2.59b 
3 6.128 6.06 1 6.039 6 060” 
4 10.461 10.280 10.220 10.209” 

a Ref. 191. 
b Ref. [lo] 

The computations for mesh A involved a total of 128 or 131 degrees of freedom 
(W, including the series coefficients. The eigenvalues were obtained 
simultaneously using the IMSL routine EIGZS. For mesh B, 329 or 332 dof were 
employed. and the computation could not be carried out in core. Each eigenvalue, 
and the corresponding eigenvector, were calculated separately by inverse iteration 
Cl0 

The results of Fox et al. [S] are for the boundary condition u=O and were 
obtained by collocating the exact series (6) over the domain boundary. For each 
symmetry type, only those terms in the series possessing the relevant symmetry 
were included, and the problem was solved over the unit square, the solution over 
the remaining two thirds of the domain being obtained from symmetry con- 
siderations. These authors obtained six-figure accuracy in the eigenvalues using 
only 26 dof. The object of the current calculation was to test the superelement for 
use over more general domains, and we therefore in each case included terms of all 
the symmetry types in the series and solved the problem over the whole domain. 

The results of Fix et al. [S] were obtained using bicubic splines, augmented by 
up to 14 singular functions similar to those in (6) above, and their results agree 
with those of Fox et al. to six figures. A coarse and a fine mesh requiring 42 and 
127 dof, respectively, were used. Bulley and Davies [9] employed a six-degree 
polynomial over each half of the L-shaped domain, imposing continuity of the 
function over the central line. They employed a total of 36 or 37 dof. The present 
method is, therefore, less efficient than the above-mentioned methods for the 
L-shaped domain, but is of more general applicability. The object of the current 
calculation was not to obtain results with maximum efficiency for this simple case, 
but rather to develop and test the accuracy of the superelement on a case where 
accurate results are available before applying it to more general domains, for which 
more specialised methods may not be available. The results of Beaubien and Wexler 
[ 10, 1 l] were obtained using standard finite differences. Their method is of general 
applicability, but requires a large number of dof (approximately 5000 for the 
L-shaped domain), as it makes no special provision for the singularity. The current 
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method, on the other hand, has been applied to a number of different domains 
[ 121, and satisfactory accuracy has been achieved in each case employing 15CM20 
dof. 

4. CONCLUSIONS 

The results of the present method are in excellent agreement with those obtained 
by other methods for an L-shaped domain, and also for other domains containing a 
re-entrant corner of angle 3rc/2. The superelement herein described thus facilitates 
the application of the finite element method to such domains, yielding eigenvalues 
of an accuracy comparable with that which would have been achieved had no 
re-entrant corner been present. The superelement may be easily incorporated into 
standard finite element programs and is compatible with linear or bilinear elements. 
In view of the availability of highly accurate results for domains containing a corner 
of angle 3x/2, the method was tested on this case, but it is easily extended to the 
case of a corner of angle 27c, i.e., to domains containing a slit. 
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